CSE4203: Computer Graphics
 Chapter-4 (part - A) Ray Tracing

Mohammad Imrul Jubair

Outline

- Projection
- Parallel projection
- Perspective projection
- Vanishing point

Credit

CS4620: Introduction to
 Computer Graphics

Cornell University
Instructor: Steve Marschner http://www.cs.cornell.edu/courses/cs46 20/2019fa/

3D \rightarrow 2D

12221_Cat_v1_I3.obj■				
10	V	0.6134	-21.9357	31.4441
11	V	0.6205	-21.8541	31.4935
12	V	0.5534	-21.8682	31.5159
13	V	0.5464	-21.9516	31.4643
14	V	0.6207	-21.7610	31.5371
15	V	0.5544	-21.7724	31.5613
16	V	0.4816	-21.8847	31.5310
17	V	0.4743	-21.9703	31.4781
18	V	0.4838	-21.7858	31.5776
19	V	0.6156	-21.6618	31.5749
20	V	0.6070	-21.5619	31.6064
21	V	0.5439	-21.5675	31.6330
22	V	0.5507	-21.6702	31.6005
23	V	0.4772	-21.5744	31.6514
24	V	0.4819	-21.6802	31.6178
25	V	0.3320	-21.5913	31.6699
26	V	0.3330	-21.7025	31.6343
27	V	0.4094	-21.6911	31.6286
28	V	0.4067	-21.5824	31.6631
29	V	0.3317	-21.8143	31.5926
30	V	0.4094	-21.8001	31.5875
31	V	0.3275	-21.9189	31.5447

Projection (1/2)

- Representing a 3D object
- Photographs also represent 3D scenes with 2D images.
- In computer graphics, Projection is used.

Projection (2/2)

- 3D points are mapped to 2D image plane by moving them along a projection direction
- until they hit the image plane

Types of Projection (1/1)

Main types:

- Parallel
- Perspective

Parallel Projection (1/3)

- Projectors are parallel
- Meet at infinity

Parallel Projection (2/3)

- Orthographic
- Image plane \Perp projector

Parallel Projection (3/3)

- Oblique
- Image plane $\not \underline{1}$ projector

Perspective Projection (1/2)

- Projector meet at a point

Perspective Projection (2/2)

- Does parallel project have a CP?
- What will happen if the object moves near/ far?
- Play around: http://www.cs.cornell.edu/courses/cs4620/2017sp/demos/view explore/vie w explore.html

Parallel vs Perspective (2/2)

- In our everyday experience (and in photographs)
- objects look smaller \leftrightarrow farther away

Vanishing Point (1/1)

- Vanishing points:
- where parallel lines meet.
- Parallel horizontal lines meet at a point on the horizon.
- Every set of parallel lines has own VP

Q: Which type of parallel lines does not meet at VP?

[^0]
Additional Reading

- The three-point perspective.

Thank You

[^0]: Credit: Fundamentals of Computer Graphics $4^{\text {th }}$ Edition by Peter Shirley, Steve Marschner \| http://www.cs.cornell.edu/courses/cs4620/2019fa/

